
Scalable Malware Clustering using Multi-Stage Tree
Parallelization

Muqeet Ali and Josiah Hagen
TrendMicro Research

USA
{muqeet ali,josiah hagen}@trendmicro.com

Jonathan Oliver
TrendMicro Research

Australia
jon oliver@trendmicro.com

Abstract—Similarity hashing is an important tool for searching
and analyzing malware samples which are similar to known
malware samples. Several similarity hashing schemes exist in
the literature (like ssdeep, TLSH, sdhash). TLSH has been
found to be particularly well-suited for finding related malware
(and goodware) samples from known malware (and goodware)
samples. In particular, TLSH has been shown to be good at
finding the different variants of a given malware. Previous work
has shown that TLSH hashes can be used to build fast search
and clustering techniques which can scale to tens of millions
of items. In this paper, we show that previous work can be
made to scale to even larger data sizes by doing clustering in
stages. A fast clustering algorithm (like k-Means) can be used
in multiple stages to obtain clusters at a coarse-level, which can
later be processed by other state-of-the-art clustering techniques
in parallel to obtain final clusters. We show that such a multi-
stage technique can be used to cluster up to 10 million items with
9-12x speedup over just using existing state-of-the-art clustering
techniques. We show that the resulting cluster quality obtained
by multi-stage clustering is comparable to the cluster quality
obtained by existing methods. Moreover, we show how to optimize
the cost (dollars spent on the cloud) or latency incurred by
multi-stage clustering technique by choosing appropriate values
of parameters

Index Terms—K-Means, Hierarchical Clustering, Trend Local-
ity Sensitive Hashing (TLSH)

I. INTRODUCTION:

Similarity hashing aims to produce hash digests which
are similar when computed on similar files or byte streams.
Similarity hashing allows for a class of related files or
malware samples to be detected by comparing their similarity
hash digests with the similarity hash digests of known files
or malware samples. It is therefore a useful tool to detect
different variants of a malware in an ever evolving threat
landscape. TLSH has been shown to be particularly useful
at identifying variants of software when minor source code
changes occur, or when some code is re-used [1], [2]. This
property allows TLSH to find related malware samples (and
threats) when given some known malware samples (and
threats). TLSH is also computationally efficient to compute.
Its time complexity grows linearly in the size of the input and
is easily scalable to large number of items. Moreover, TLSH
works on byte streams which makes it a general-purpose
technique and is also more robust to security attacks as
compared to other techniques which rely on features based
on metadata. Subverting a single feature which comes under

the control of the attacker can compromise the accuracy of
such techniques.

Searching and clustering TLSH hashes is an important
tool as it allows the analyst to sift through vast amounts
of goodware and malware present in the wild and make
informed decisions. The sheer amount of data to be analyzed
often makes it difficult for analysts to pinpoint the related
threats to a given known threat. A fast clustering technique
can quickly find related samples of interest, and this can
greatly help analysts to infer meaningful associations between
related malware samples, and families. It can also be used to
develop an effective whitelisting tool where related samples
to known goodware samples are whitelisted based on their
proximity to the goodware samples [3]

Most previous work on clustering malware could not scale
to large number of items as it either used features which
were difficult to extract and compute, or used clustering
methods which could not scale to large number of items (we
discuss prior work in greater detail in Section II). Recently,
some clustering techniques have been proposed which can
scale to large number of items [4]–[6]. One such technique
uses TLSH hash digests to develop a scalable searching
and clustering technique which can use either Vantage Point
Trees (VPT) or Forest-based index [6]. This technique is
referred to as Threshold based Hierarchical Agglomerative
Clustering (HAC-T). HAC-T has been shown to scale to
tens of millions of items while also exhibiting good cluster
quality which indicates that the items within clusters are
similar to each other. In this paper, we show how to use
multi-stage clustering technique to scale HAC-T clustering
as described in [6] to even larger data sets. We develop
a multi-stage clustering method which combines k-Means
clustering with HAC-T clustering and works in stages. In
multi-stage clustering consisting of n stages, k-Means is used
to obtain coarse-level clusters during the first n-1 stages.
In the final stage, more expensive but accurate clustering
technique like HAC-T clustering is used to obtain the final
clusters. Note that all the stages after the first stage, can be
made to run in paralllel which allows for significant speedup
over just using HAC-T clustering. The easy parallelization
allows for cloud resources to be utilized as each cluster can



be assigned to its own worker machine.

We make the following contributions in this paper:
• We introduce multi-stage clustering, and show that it can

be used to cluster up to 10 million items.
• We show that multi-stage clustering can be used to obtain

a speedup of 9-12x over just using HAC-T clustering
without compromising on cluster quality

• We show that multi-stage clustering can be optimized for
reducing cloud resources (dollar cost) and/or for reducing
the job completion time of the clustering task.

Next we describe the organization for the rest of the paper.
In Section II we discuss prior art, and discuss recent clustering
techniques. In Section III we discuss TLSH in greater detail.
In Section IV we present our multi-stage clustering technique,
and show experimental evaluation of its usefulness. In Section
V we discuss the tradeoffs involved in choosing different
parameter values of the clustering technique presented. We
conclude in Section VI

II. PRIOR ART:

Many studies have been performed to cluster malware
samples (or files). Some recent studies present scalable
clustering techniques which scale to large number of items
[4]–[6]. Authors in [4] present a clustering technique which
they estimate can scale to cluster millions of files. It uses
sketches to represent files, and DBSCAN is used to obtain
final clusters using approximate nearest neighbors. Another
paper presents a variant of DBSCAN making use of approx.
nearest neighbors approach based on HNSW (Hierarchical
Navigable Small World) graphs [5]. A recent paper is able
to scale clustering to millions of files, using TLSH hash
digests, and demonstrates that it scales better than previous
two approaches as outlined above [6]. This approach uses a
tree-based index for fast search. There are two approaches (i)
either the index can be used with Vantage Point Tree search
with backtrack; or (ii) a forest may be built which is then
used for fast search of TLSH hashes. The index is then used
as a building block for hierarchical threshold based clustering
approach (HAC-T). Since we found this approach to be the
most scalable, we compare our technique with this approach
throughout the paper.

A variety of hierarchical clustering techniques have been
used on malware, none of which scale to millions of samples
[7]–[13]. These studies either did not evaluate their techniques
on a large-scale or their estimates of throughput take on the
order of days to scale to a million samples. Note also that
most of these technique rely on metadata which are used as
features in the clustering algorithm utilized. Such an approach
which relies on metadata for features is susceptible to evasion
techniques which can be used by the attackers if they happen
to control some of the metadata used for clustering. TLSH
based clustering is less susceptible to such attacks as the
TLSH hash digest is computed using the whole byte stream

[14].

A comparative analysis of several clustering techniques for
malware based on different distance and evaluation metrics is
presented in [15], [16]. It found hierarchical and density-based
approaches as winners. BIRCH clustering was also shown to
be effective at clustering malware. However, the data set is
restricted to a few thousand samples which does not allow
us to understand the scalability of the approaches presented.
BIRCH clustering is also more suited for Euclidean distance
metrics, and we deal with non-Euclidean distance in this paper.

Some other approaches use more involved or complex
models for clustering malware samples [17], [18]. A deep
learning based architecture based on auto-encoders is used to
cluster malware samples of PE files [17]. A bytes frequency
based approach is used in [18] to cluster malware samples
using symbolic aggregation approximation. The works [17],
[18] are not directly comparable to our work as they depend
on complex techniques and models which are difficult to
scale. Neither of these works have evaluated their techniques
on a million samples or more. Also, most techniques rely on
a set of features to obtain clustering and are more susceptible
to evasion.

An ensemble learning based approach to cluster malware
samples is explored in [19], [20]. This approach combines
different clustering algorithms with different set of features
(both static and dynamic) to more effectively cluster the
malware samples. However the evaluation is only limited to
a few thousand samples . A coarse-level clustering technique
(BIRCH) is combined with fine-grained clustering technique
(hierarchical clustering) in [21]. The high-level approach used
by this work is quite similar to our approach of combining
coarse-level clustering with fine-grained clustering, however,
it uses different clustering algorithms and aims to cluster
HTTP-based malware. Moreover, it is not as scalable as our
approach as it takes more processing times for clustering
100,000 samples as compared to our approach which can
cluster in the millions using less time.

III. TLSH OVERVIEW:

TLSH is a locality sensitive hash which produces a fixed-
length hash digest based on the input bytes. The standard
TLSH hash (which is used throughout in this paper) comes out
to be 70 characters long. TLSH hash digest has the property
that two similar inputs would produce a similar hash digest
(the hash computation is based on statistical features of the
input bytes). The hash digest is a concatenation of the digest
header and digest body. The following steps are involved in
computation of the standard TLSH hash:

• All 3-grams from a sliding window of 5 bytes are used
to compute an array of bucket counts, which are used to
form the digest body.



• Based on the calculation of bucket counts (as calculated
above) the three quartiles are calculated (referred to as
q1, q2, and q3 respectively).

• The digest body is constructed based on the values of the
quartiles in the array of bucket counts, using two bits per
128 buckets to construct a 32 byte digest.

• The digest header is composed of a checksum, the
logarithm of the byte string length and a compact rep-
resentation of the histogram of bucket counts using the
ratios between the quartile points for q1:q3 and q2:q3

Two different TLSH hash digests are compared using the
TLSH distance. The TLSH distance of zero represents that the
files are likely identical, and scores greater than that indicate
greater degrees of dissimilarity (please see the original paper
for more details on the computation of the distance) [22].

IV. MULTI-STAGE CLUSTERING:

In this section, we describe in greater detail our approach
which combines a variant of k-Means clustering algorithm
with HAC-T clustering technique. As noted in the comparative
analysis of different clustering algorithms [6], k-Means is a
fast clustering method however the resulting clustering quality
is usually not very good to make it useful for similarity
search and analysis of malware. On the other hand, HAC-T
clustering technique presented in [6] produces clusters which
are on average quite homogeneous, and are much better
suited for similarity search. However, HAC-T clustering
scales in O(n · logn) manner as compared to linear scalability
of k-Means. We present a technique which combines these
two clustering techniques, and show that it is able to achieve
good clustering quality while being more scalable than using
HAC-T clustering alone.

A. Multi-Stage Clustering Overview:

We propose a technique which combines k-Means algorithm
with HAC-T clustering technique to do clustering in stages.
We first describe the multi-stage clustering technique for
two stages, and refer to it as two-stage clustering (2-SC).
In the two-stage clustering, we first use k-Means algorithm
on the input data set to obtain coarse-grained clusters. In
the second stage, we run HAC-T clustering on each of the
clusters obtained from stage one. Note that the second stage
can be done in parallel. HAC-T clustering is able to produce
fine-grained clusters which are useful for similairty search and
analysis. Two-stage clustering is faster as compared to HAC-T
clustering as the first stage acts as a fast preprocessing step
which allows HAC-T clustering to be used on the (smaller)
coarse-grained clusters as compared to the original data set.
Moreover, the easy parallelization allows for clustering task
to be parallelized and the subtasks can be assigned to its own
worker machines in the second stage.

The intuition behind such two-stage clustering approach
is to use k-Means as a first step to divide the clusters at a
coarse-level in an efficient manner. The coarse-level clusters

are not suitable for finding similar malware or for hunting
down a specific variant of a malware, although they are
reasonably good at separating out the clusters at a large
enough level so as to make way for the more expensive but
better HAC-T clustering to work on the (smaller) coarse-level
clusters.

Conceptually, the multi-stage clustering technique can be
done in multiple stages (or levels). For a general description
of the technique we consider n stages (where n is greater than
2), and refer to the resulting clustering technique as n-stage
clustering (n-SC). In the first stage we perform k1-Means
clustering to obtain k1 coarse-grained clusters. In each of the
next (n-2) stage(s) we run kn−2-Means algorithm respectively
on each of the clusters obtained in the previous stage. Note
that in each of these stages, the kn−2-Means algorithm can
be run in parallel on each of the clusters obtained from
the previous stage. In the last stage, we perform HAC-T
clustering on all the clusters produced by the previous stage
in parallel. For example, we consider three-stage clustering
(3-SC) in which k1-Means would be used in the first stage to
produce k1 clusters. In the second stage, we use k2-Means
algorithm on each of the k1 clusters to obtain k = k1 ·
k2 clusters in total. In the third stage, HAC-T clustering
is used on the k clusters to obtain fine-grained clusters. A
schematic diagram which describes the conceptual overview
of three-stage clustering with k1 = 4 and k2 = 2 is presented
in Figure I. In this Figure, Ci,j is the jth cluster obtained
after the ith stage is completed. A total of w clusters are
obtained after applying HAC-T clustering in the final stage.

We use a modified k-Means algorithm which is adapted
to work on TLSH distances [6]. It essentially computes the
mean by first converting the 70 character TLSH hash into a
70 coordinate vector and computing the mean of the vectors
(m). It then computes the closest TLSH hash item to the
mean (m) using TLSH distance and uses that as the mean
in the algorithm. It is a heuristic which allows us to adapt
k-Means algorithm for clustering TLSH hashes which use the
TLSH distance as compared to Euclidean distance metric.

Below we discuss some unique features of multi-stage
clustering which allow it to scale much better as compared to
other clustering techniques:

• Multi-stage clustering allows for better scalability as
it uses the faster method (k-Means) as a first step to
preprocess the data and produce coarse-level clusters
which can be processed using the more effective HAC-T
clustering to obtain interesting clusters which are smaller
and more numerous.

• It allows for effective parallelization of the original
clustering problem as the clusters obtained from previous
stage can be clustered in parallel

• It can also be used to optimize for total compute time (or
dollars spent on the cloud) and/or completion time of the



Fig. 1: A schematic diagram explaning the flow of three-stage clustering with k1=4 and k2=2. A total of w clusters are obtained
after the final stage.

clustering job by optimizing k-Means parameters (more
on this is described in Section V)

Next, we discuss the experimental setup and evaluation.

B. Experimental Setup :

Our experimental setup consists of a fleet of commodity
cloud 32-core machines with 128 GB memory, and AMD
EPYC 7000 series processor (with an all core turbo clock
speed of 2.5 GHz). In our experiments, we used all 32 cores
for the execution of k-Means algorithm, while a single core is
used for the execution of HAC-T clustering. We used a fleet
of up to 100 machines in our experiments with each stage
using a different number of machines based on the number of
clusters available for parallel execution.

We source data from VirusTotal data feeds. We used
a random sample of VirusTotal data downloaded between
September 2019 and Feb 2020. The VirusTotal data feed
gives information about the scan results of all the major
anti-virus vendors (it gives us ‘True’/‘False’ labels based on
whether the file was detected by the respective AV vendor
or not, and includes the malware family/variant information
for the files which were detected as ‘True’). It also includes
some auxiliary information (like SHA1, md5 etc.) for each
file. We calculate the TLSH for each Win32 PE file that is
submitted to VirusTotal, as provided by the data feed. We use
the TLSH and ‘True’/‘False’ labels obtained from five major
anti-virus vendors (Kaspersky, Microsoft, Symantec, Sophos,
and McAfee) when doing clustering analysis to ascertain the
quality of the clustering.

C. Experimental Evaluation:

We evaluated two-stage clustering (2-SC) and three-stage
clustering (3-SC) with recent state-of-the-art HAC-T using
forest-based implementation as described in [6]. We have
done a comparative analysis of these clustering techniques
using a sample size of up to 10 million items. The clustering
quality is measured using labels (‘True’/‘False’) obtained
from five major AV vendors in VirusTotal data feed. We have
used purity as the metric for computing cluster quality as it
scales linearly with increasing sample sizes. We investigated

other cluster quality metrics like silhouette coefficient but
these do not scale well to millions of items so we ended up
not using them. Purity score varies from 0 to 1 with 1 for the
perfect cluster quality and 0 for data set with worst cluster
quality.

Table I shows a comparison of the purity scores for the
three clustering techniques evaluated at different sample
sizes. The purity scores are reported for five major anti-virus
vendors (Kaspersky, Microsoft, Symantec, Sophos, and
McAfee). As the multi-stage clustering technique involves
k-Means which tends to be dependent on the initial random
seed, we have reported the results for two-stage and three-
stage clustering by averaging the results over 10 executions
of these techniques. We have chosen k = 100 as value of the
parameter of k-Means in two-stage clustering, and we chose
k1=10 and k2=10 as parameters for three-stage clustering
(note that k1 and k2 are chosen such that k1 · k2 = 100).
We chose max iterations = 10 for every execution of the
k-Means algorithm used in multi-stage clustering. For the
purpose of this evaluation we chose the parameter T as 50
which is a TLSH distance threshold used by the HAC-T
clustering algorithm [6].

Table II presents an evaluation of running times and
percentage of items clustered for the three clustering
techniques. As can be inferred from the two tables, the
two-stage clustering approach is 5-7x faster as compared to
just running HAC-T clustering, and it produces similar cluster
quality. The percentage of items clustered is only lagging by
at most 1 percent. Also, we can infer from Table I and Table
II that three-stage clustering is able to run much faster than
HAC-T clustering while producing similar cluster quality.
In fact, it is able to provide 9-12x speedup over using just
HAC-T clustering, and it is able to cluster almost the same
percentage of items as clustered by two-stage clustering.
Note that the machines exchange some information (from
AWS S3 bucket) regarding clusters. This is how machines
communicate regarding which items belong to a given cluster,
and this time is included in the time reported in Table II.



n=1 million n= 2 million n= 4 million n= 10 million
HAC-T 2-SC 3-SC HAC-T 2-SC 3-SC HAC-T 2-SC 3-SC HAC-T 2-SC 3-SC

Kaspersky AV 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
Microsoft AV 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Symantec AV 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Sophos AV 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
McAfee AV 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

TABLE I: A comparison of purity scores for HAC-T clustering, two-stage clustering (2-SC) and three-stage clustering (3-SC)
using five major AV vendors

n=1 million n= 2 million n= 4 million n= 10 million
HAC-T 2-SC 3-SC HAC-T 2-SC 3-SC HAC-T 2-SC 3-SC HAC-T 2-SC 3-SC

Time Taken (s) 510.59 96 53.43 1149.45 181.7 108.84 2640.51 372.07 220.9 7782.55 1131.66 833.74
(%) Clustered 60 59 58 62 61 61 64 63 63 67 66 66

TABLE II: Time taken and (%) clustered for HAC-T, two-stage clustering (2-SC) and three-stage clustering (3-SC)

It could be possible to further reduce the clustering time
by considering more levels of clustering (i.e., use more than
three stages in multi-stage clustering as described previously)
but note that the parallelization opportunity reduces with each
successive level of the multi-stage clustering. Note that the
parallelization opportunity would eventually go away after
some (finite) number of levels.

V. CHOICE OF PARAMETERS:

As noted in the previous section, we chose a particular
set of values for the multi-stage clustering technique. In this
section, we investigate which choice of parameter values
makes more sense, and what are the different tradeoffs
involved in choosing these values for the parameters. We
present our results for two-stage clustering but we believe
these serve as guidance for selecting parameters for multi-
stage clustering in general. We first investigate how different
values of k affect the running time of the clustering technique
as well as the dollars spent on the cloud resources utilized.
We define job completion time as the latency measured in
seconds from job start to the job end, where job end happens
when all the clusters in the second stage have been processed
by HAC-T clustering algorithm. We define total time as the
time spent by all the instances when executing the two-stage
clustering technique. Total time is equal to the time that
we used the cloud resources to perform clustering which is
proportional to the dollars spent on the cloud (as most cloud
providers charge based on the time the cloud resources were
used).

In Figure II we show that as k is varied (from low to high),
initially both total time and job completion time decrease
(or remain stable) but then after a certain threshold both
total time and job completion time start increasing again.
This holds true for different sample sizes. We experimented
with sample size range from 500k to 4 million and found a
consistent behavior. Also, we averaged each reported result
over 10 executions of two-stage clustering in order to account
for variations owing to the random seed used by k-Means.
We also observe that the optimal value of k increases slowly

(more akin to logarithmically) with increasing values of
sample sizes (n). We chose a value of k = 100 for our
experiments in the previous section as we believe choosing
a larger value only consumes additional cloud resources
and does not help in reducing job completion time either.
We chose a conservative value which saves cloud resources
without compromising on the job completion time. We
separately confirmed that changing values of k does not alter
the clustering quality in any meaningful way as clustering
quality is determined by HAC-T clustering algorithm.

Next, we describe how values of parameter T affect
the clustering quality of the clusters obtained by HAC-T
clustering, and also the percentage of items clustered. Table
III shows the tradeoffs involved in this regard.

T=20 T=40 T=60 T=80 T=100
(%) Noise 51.10 43.24 37.77 32.49 27.72
Average purity score 0.982 0.976 0.974 0.964 0.956

TABLE III: Items clustered and average purity score achieved
for n = 1 million

Table III shows the value of T affects both the percentage
of items clustered and the average purity score achieved (the
purity score is calculated by computing the average purity
score for five major anti-virus vendors (Kaspersky, Microsoft,
Symantec, Sophos and McAfee). As we increase the value of
T more items can be clustered owing to a greater distance
threshold allowed but the purity score decreases. We chose a
value of 50 for T as a best estimate which accounts for the
above tradeoffs involved.

VI. CONCLUSION:
TLSH has been found to be useful when comparing similar

byte streams, and is particularly useful to find the many vari-
ants of a given malware family. Previous work on clustering
TLSH hashes has addressed the problem of searching and clus-
tering TLSH hashes but was confined to the limits of a single
machine/core. This restriction puts a limit on the number of
items that can be clustered effectively in a given amount of
time. We have presented a technique by which one can easily



Fig. 2: The effect of k on the job completion time and total time associated with the two-stage clustering technique

scale HAC-T clustering approach by making use of k-Means
as a preprocessing time to produce clusters which can then be
clustered by making use of on-demand cloud resources. The
final clustering so obtained is useful for separating the files
based on labels obtained from VirusTotal, however, note that
TLSH hash digests are calculated based on byte streams and
do not consider behavior-based features which are considered
by some other clustering approaches. It might be possible to
further refine the clustering by applying some behavior-based
approach. However, we believe that clustering based on TLSH
hash digests serves as an excellent first pass as most other
approaches are computationally expensive and fail to scale to
millions of items.

REFERENCES

[1] F. Pagani, M. Dell’Amico, and D. Balzarotti, “Beyond precision and
recall: understanding uses (and misuses) of similarity hashes in binary
analysis,” in Proceedings of the Eighth ACM Conference on Data and
Application Security and Privacy, 2018, pp. 354–365.

[2] J. Coffman, A. Chakravarty, J. A. Russo, and A. S. Gearhart, “Quantify-
ing the effectiveness of software diversity using near-duplicate detection
algorithms,” in Proceedings of the 5th ACM Workshop on Moving Target
Defense, 2018, pp. 1–10.

[3] J. Oliver and J. Pryde, “Smart Whitelisting Using Locality
Sensitive Hashing,” https://www.blackhat.com/asia-17/arsenal.html#
smart-whitelisting-using-locality-sensitive-hashing, 2017, [Online;
accessed 13-Aug-2020].

[4] K. Soska, C. Gates, K. A. Roundy, and N. Christin, “Automatic
application identification from billions of files,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2017, pp. 2021–2030.

[5] M. Dell’Amico, “Fishdbc: Flexible, incremental, scalable, hierarchical
density-based clustering for arbitrary data and distance,” arXiv preprint
arXiv:1910.07283, 2019.

[6] J. Oliver, M. Ali, and J. Hagen, “Hac-t and fast search for similarity in
security,” in To Appear in IEEE COINS Conference, 2020.

[7] Y. Li, S. C. Sundaramurthy, A. G. Bardas, X. Ou, D. Caragea, X. Hu,
and J. Jang, “Experimental study of fuzzy hashing in malware clustering
analysis,” in 8th Workshop on Cyber Security Experimentation and Test
({CSET} 15), 2015.

[8] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering.” in NDSS, vol. 9. Cite-
seer, 2009, pp. 8–11.

[9] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, “Mutantx-s: Scalable
malware clustering based on static features,” in Presented as part of the
2013 {USENIX} Annual Technical Conference, 2013, pp. 187–198.

[10] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: feature hashing
malware for scalable triage and semantic analysis,” in Proceedings of
the 18th ACM conference on Computer and communications security,
2011, pp. 309–320.

[11] Y. Li, J. Jang, X. Hu, and X. Ou, “Android malware clustering through
malicious payload mining,” in International Symposium on Research in
Attacks, Intrusions, and Defenses. Springer, 2017, pp. 192–214.

[12] O.-B. Boţocan and G. Czibula, “Hacga: An artifacts-based clustering
approach for malware classification,” in 2017 13th IEEE International
Conference on Intelligent Computer Communication and Processing
(ICCP). IEEE, 2017, pp. 5–12.

[13] A. Mohaisen, O. Alrawi, and M. Mohaisen, “Amal: High-fidelity,
behavior-based automated malware analysis and classification,” comput-
ers & security, vol. 52, pp. 251–266, 2015.

[14] J. Oliver, S. Forman, and C. Cheng, “Using randomization to attack
similarity digests,” in International Conference on Applications and
Techniques in Information Security. Springer, 2014, pp. 199–210.

[15] H. Faridi, S. Srinivasagopalan, and R. Verma, “Performance evaluation
of features and clustering algorithms for malware,” in IEEE International
Conference on Data Mining Workshops (ICDMW), 2018, pp. 13–22.

[16] G. Pitolli, L. Aniello, G. Laurenza, L. Querzoni, and R. Baldoni, “Mal-
ware family identification with birch clustering,” in 2017 International
Carnahan Conference on Security Technology (ICCST), 2017, pp. 1–6.

[17] C. K. Ng, F. Jiang, L. Y. Zhang, and W. Zhou, “Static malware
clustering using enhanced deep embedding method,” Concurrency and
Computation: Practice and Experience, vol. 31, no. 19, p. e5234, 2019.

[18] N. Singh and S. S. Khurmi, “Bytefreq: Malware clustering using byte
frequency,” in 2016 5th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions)(ICRITO).
IEEE, 2016, pp. 333–337.

[19] X. Hu and K. G. Shin, “Duet: integration of dynamic and static analyses
for malware clustering with cluster ensembles,” in Proceedings of the
29th annual computer security applications conference, 2013, pp. 79–88.

[20] Y. Ye, T. Li, Y. Chen, and Q. Jiang, “Automatic malware categorization
using cluster ensemble,” in Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2010, pp. 95–104.

[21] R. Perdisci, D. Ariu, and G. Giacinto, “Scalable fine-grained behavioral
clustering of http-based malware,” Computer Networks, vol. 57, no. 2,
pp. 487–500, 2013.

[22] J. Oliver, C. Cheng, and Y. Chen, “Tlsh–a locality sensitive hash,” in
2013 Fourth Cybercrime and Trustworthy Computing Workshop. IEEE,
2013, pp. 7–13.


